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Attenuation Characteristics of Hollow Conducting

Elliptical Waveguides

JAN G. KRETZSCHMAR

Abkfracf—The first-order perturbation formula is used to obtain

the attenuation factor of different TE and TM modes in hollow con-

ducting elliptical waveguides. Normalized attenuation charts give

the attenuation factor for almost each possible combination of cross-

sectional dimensions, nonmagnetic wall material, and frequency
of operation.

INTRODUCTION

T

HE first results on the attenuation of different

modes in hollow conducting elliptical pipes were

given by Chu [1]. In order to simplify the compu-

tations known asymptotic expansions were used for the

modified Mathieu, functions, but this limited the valid-

ity of the results. Using the same approach an exact ex-

pression for the complex propagation factor was ob-

tained by Piefke [2], but once again a simplification was

necessary in order to avoid highly complicated computa-

tions. Therefore, new asymptotic formulas, described in

[4], were developed by Piefke, but the assumptions

made restrict their accuracy in a rather drastic way.

Krank [5] used the first-order perturbation method in

his analysis, but the deadly slow rate of convergence

[8], [13], [14] of the hyperbolic series used to compute

the modified Mathieu functions limits the accuracy of

his data, especially for the higher order modes (although

sufficient accuracy for the dominant mode was ob-

tained).

The purpose of this paper is to present data obtained

by using the perturbation method for the analysis and

w
Fig. 1. Hollow conducting waveguide with elliptical cross section.

ATTENUATION OF TE MODES

A harmonic time variation and propagation in the

axial direction is assumed for the waves propagating in

the hollow conducting elliptical waveguide represented

in Fig. 1. When the conducting boundaries have finite

conductivity ~, but are still good enough conductors, the

attenuation factor a. due to wall currents can be ob-

tained from the fields in the perfect guide. This proce-

dure is classic and described in most textbooks. The

solution for the HSP elliptical guide is well known [1],

[11 ], and using this in the above mentioned method

leads to the following normalized expression for the at-

tenuation factor of the even TEm modes [5] in the

guide given in Fig. 1:

Bessel-function product series for the practical compu- with

tations of the modified Mathieu functions of the first

kind [8], [13 ], [14]. Furthermore, an approximate

formula for the dominant mode, which was proposed by

Kihara [6], [7], [1o], is verified, and it is shown that and

the relative error of that formula is smaller than 3 per- $, q

cent over the complete eccentricity and frequency range. q
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-fo/fc = ‘- (afO)
Cdq

(2)

elliptic coordinates,

nth nonzero parametric root of Cem’ (go, q)

= O (Neumann boundary condition),

even Mathieu function of the first kind and

order m,

corresponding modified Mathieu function, <

frequency of the wave (Hz),
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Fig. 2. Normalized attenuation charts for different TE and TM modes in air-filled elliptical waveguides with nonmagnetic walls. The follow-
ing symbols and units are used: a semimajor axis in meter, e eccentricity of the cross section, ac attenuation in Np/m, a conductivity in

S/m, and jO frequency in GHz.

f. cutoff frequency of the nznth mode (Hz),

e eccentricity y,

io radial coordinate of the boundary ellipse,

ac attenuation factor in Np/m and 1 Np/m

= 8.686 dB/m.

The primes in (1) mean the first derivative with respect

to the argument ~ or q, as the case may be. The double

integral in the denominator of (1) can be reduced to a

single one over .$ by applying the properties of the
ordinary Mathieu functions [8, sec. 14-40]. The modi-

fied Mathieu functions are computed by using Bessel-

function product series as described in [8], [13], [14].
With (2) it is obvious that the right-hand side of (1)

is a function of the product ajo and the eccentricity e,

and this enables us to construct for each mode a single

attenuation chart which gives the attenuation factor for

almost each possible combination of a, .fO, a, and e. The

attenuation characteristics obtained for the dominant

TE.11 mode and the even TE,u mode in an air-filled

waveguide with wall conductivity u are given on Fig.

2(a) and (b). For a given eccentricity the attenuation

curves display the same kind of dependence upon the

frequency as for the circular case, but for the same mode

and the same guidewidth 2a the attenuation in the ellip-

tical pipe is always larger than in the circular one, al-

though there is not much difference for small values of

e. At a given frequency the attenuation in a guide with a

given major axis increases with increasing eccentricity

or decreasing minor axis, and this more rapidly as the

eccentricity becomes larger. The difference between our

results and the curves given by Krank [5] for a TE~Jl

and TE.01 mode in a copper guide is slmall and of the

order of the error involved in an interpolation on the

charts. This is not the case for results given in [1] and
[3]. For a copper elliptical waveguide with eccentricity

0.8 and major axis 3.5 cm an attenuation of 8.3 Np/km

at 7 GHz and 6.44 Np/km at 40 GHz is reported in [3]

for the dominant mode. For the same guide we obtain

6.53 Np/km and 6.54 Np/km, respectively. Fig. 2(b)
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Fig. 4. Relative error of Kihara’s approximate formula for the

attenuation of the dominant mode in an elliptical waveguide.

of the dominant even mode. This is completely analo-
TE;,

gous to the phenomenon that the attenuation of the
2 3 Of.

Fig. 3. Normalized attenuation curve of the TE.N and TEm
modes in elliptical guides with different eccentricities.

suggests that the TE,Om modes have the same anomalous

attenuation characteristics as the TEO. modes in circular

waveguides. This is true over a large but limited fre-

quency range determined by the eccentricity value. The

limitation is due to the fact that the second integral in

the numerator of (1) is not zero for TE.on modes except

when e = O. For each eccentricity value there is a fre-

quency range where the TE~ol mode has the lowest at-

tenuation. Fig. 3 represents the ncn-malized attenuation

characteristic of the TEOL TE02, and TECOI, TE002modes
with e as parameter over a broad frequency range. The

attenuation of the TE.21 mode given on Fig. 2(c) is im-

portant too, as this mode becomes the first higher order
mode if the eccentricity exceeds about 0.855 [11].

The procedure followed for the odd TE,~~ modes is

exactly the same as for the even ones, and the normal-

ized attenuation factor for the hollow conducting guide

is given by (1), except that the even Mathieu and modi-

fied Mathieu functions must be replaced by the odd

ones.

Fig. 2(d) gives the normalized attenuation chart for

the TE.11 mode. Over a large interval of frequency the

attenuation for a given frequency and major axis in-

creases with eccentricity and does so more rapidly with
increasing eccentricity. For higher and higher values of

a~o the attenuation factor tends to an almost eccen-
tricity-independent value, which is approximately equal

to the attenuation factor of the TE1l mode in the corre-

spofiding circular waveguide. Another interesting fact is

that for frequencies larger than a certain value (which

~EOl mode in-a rectangular waveguide becomes smaller

than the attenuation of the dominant TEUJ mode in the

same guide for frequencies larger than a certain fixed

value depending upon the ratio b/a with b S a.

As the formulas for the attenuation in an elliptical

waveguide are quite complicated and require not only

the calculation of Mathieu functions, modified Mathieu

functions, and their first derivatives, but also of inte-

grals with combinations of those functions as integrand,

it is clear that an approximate formula with known

accuracy, and not involving those rather uncommon

functions, would be very helpful in practical design,

especially for the fundamental mode. Using a variational

approach, Kihara [6], [1 O] approximated the electro-

magnetic field distribution and cutoff wavelength of the

dominant mode by algebraic functions. By doing so he

obtained an approximate expression for the attenuation

factor of the TE.11 mode. IXormalizing this formula in

the same way as was done before gives

so<= = 0.725 F(afo)l/z (3)

and the normalized attenuation factor is once again a

function of the product (afo) and the eccentricity e, as

the factor F only depends upon those quantities as ex-

plained in [6]. The exact attenuation factor is always

smaller than the one given by (3), as the variational ap-

proach gives an upper limit for the attenuation factor.

Fig. 4 gives the relative error e, on a. as a function of

(afo) and e. The frequency fo in (3) is in gigahertz.

ATTENUATION OF TM MODES

Using the same approach as for the TE modes one

obtains the following expression for the normalized at-

tenuation factor of the even TM~~~ modes [5]

— r moufo 71/2 s2r ce~z (v, q)
Ce~’2(&, q) dq

o <1 — e2 Cosz q

acda3u = 1
..-

J1 – (jc/fo)’ “~ 2T to

H
[Ce~’2(& q)ce~’(q, q) + Ce~2(& q)ce~’2(q, q)] dg dq

o 0

(4)

increases with increasing eccentricity) the attenuation The different symbols have the same meaning as before,

of the odd mode becomes smaller than the attenuation except for the parameter q. Due to the Dirichlet bound-
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ary condition, g is now the nth nonzero parametric zero

of the modified Mathieu function of the first kind, order

m, and argument go. Replacing the even Mathieu func-

tion in (4) by odd ones gives the attenuation for the odd

TM,~. modes. Attenuation charts for the TMCO1, TMC1l,

and TM$ll modes are given in Fig. 2 (e)–(g). Minimum

attenuation occurs in the circular guide while the at-

tenuation increases with the eccentricity for a fixed

major axis and frequency, and this more rapidly as e

becomes larger. The attenuation of the odd TM,ll mode

is larger than the attenuation of the even TMC1l mode,

and they do not behave as the even and odd dominant

TEI* modes. Again, quite a difference between these

curves and previously published results [1], [3] is

noticed.

COMPARISON BETWEEN RECTANGULAR, CIRCULAR,

AND ELLIPTICAL WAVEGUIDES WITH THE SAME

CUTOFF FREQUENCY

Although rectangular and some circular guides have

standard dimensions and corresponding fixed frequency

ranges this is not the case for the less common elliptical

guides. This leaves us a wide variety of possibilities for

a comparative study. As an example, we compare the

WR-90 rectangular guide with a circular and elliptical

waveguide with the same cutoff frequency. The rec-

tangular and elliptical guides have the same b/a ratio

while all three guides have aluminum walls. Some of

their respective properties are summarized in the fol-

lowing table. The attenuation in the-elliptical waveguide

is approximately 13 percent less than the attenuation

in the rectangular guide, while the attenuation of the

circular guide is 40 to 50 percent less than the attenua-

tion of the elliptical one. It turns out that in general the

attenuation of the dominant mode in an elliptical wave-

guide is 12 to 15 percent less than the attenuation of the

dominant mode in a rectangular guide with the same

cutoff frequency, wall material, and side ratio. The cir-

cular guide with the same cutoff frequency always has

the lowest attenuation of the three types.

First
Higher

Dimensions Dominant ~. Order
Type (cm) Mode (GHz) Mode (G~z)

Rectangular 2a=2.286 TEI, 6.557 TE20
(WR 90)

13.114
2b=l.016

Elliptical 2a= 2.7304 TEC,l 6.557 TE.ZI 12.000
2b=l.2134

Circular 2a=2.679 TE*, 6.5.57 TM a 8.566

CONCLUSIONS

The well-known first-order perturbation method ap-

plied to elliptical waveguides leads to theoretical formu-

las for the attenuation due to conductor losses.

The practical application of those formulas not only

requires the computation of Mathieu and modified

Mathieu functions and their first derivatives, but also

requires the evaluation of integrals where the former as

well as the latter are involved. Bessel-function product

series are quite complicated, especially when differentia-

tion and integration are required, but their high rate of

convergence ensures excellent results for the computa-

tion of modified Mathieu functions.

Normalization of the attenuation factor for TE and

TM modes in hollow conducting pipes with elliptical

cross section makes it possible to present for each mode

a single attenuation chart for all possible combinations

of frequency, eccentricity, major axis, and conductivity

of the nonmagnetic metal wall. Applying the same pro-

cedure to hollow conducting pipes with rectangular and

circular cross section enables an easy comparison of the

attenuation characteristics of those three waveguide

types. One of the conclusions of such :L comparative

study is that the attenuation in an elliptical guide is 12

to 15 percent less than the attenuation in a rectangular

guide with the same cutoff frequency and axial ratio if

both guides operate in their dominant mode. The dif-

ference in bandwidth is of the same order, and the

rectangular type has the largest bandwidth. This con-

clusion fits into the more general observation that the

elliptical waveguide has some of the advantages as well

as some of the disadvantages of both rectangular and

circular waveguides.

Although exact computations of the attenuation fac-

tor are possible, it is obvious that they are quite cumber-

some for practical design purposes. An approximate

formula for the dominant mode is therefore verified,

and it is shown that its relative error is smaller than 3

percent.

Finally, we can conclude that the resul ts given in this

paper, together with the properties described in previ-

ous publications, form a fairly complete characteriza-

tion of hollow conducting elliptical waveguides.
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Short Papers

A Novel Design of an X-Band High-Power

Ferrite Phase Shifter

KARL H. HERING

Abstract—A nonreciprocal analog-latching phase-shifter design

at X-band is described. The device has been operated up to 250 W

of average power and 50 kW of peak power. Direct liquid cooling is

implemented, pumping FC-78,1 a dielectric coolant, through the

center slot of the ferrite toroid.

INTRODUCTION

A novel design of an X-band ferrite phase shifter is presented.

The device is designed to handle high power levels—up to 250 W

average and 50 kW peak. The phase shifter is of the nonreciprocal

analog latching—a name given to the type of digital phase shifters

that consist of one long toroidal bar. In this type of device the phase

shift is controlled by the driver signal leveI, as opposed to the con-

ventional digital ferrite phase shifter, which consists of different

lengths of ferrite toroids, each drivqn into saturation. Internal liquid

cooling is used to achieve stable performance of the device even at

the high average power levels.

The phase shifter required a thermal design of the configuration,

selection of the most applicable ferrite material for high-peak and

average-power handling, and a method of implementing cooling of

the ferrite bar.

THERMAL DESIGN ASPECTS

Applicable methods of cooling the phase-shifter material are: 1)

a cold plate [1 ], 2) forced-air cooling, 3) conduction cooling using

boron nitride in contact with the ferrite [2], or 4) direct liquid cool-

ing, as was chosen for this novel phase-shifter design. Other tech-

niques are limited in either cooling potential or for mechanical

reasons. Cooling, using a coldplate, has been used successfully in

high-power ferrite phase-shifter designs [1], [2]. In doing so, how-

ever, the cross section of the phase shifter becomes large. In many

phased-array applications very little space is available between the

radiating-element/phase-shifter assemblies. Cooling with boron

nitride or similar dielectric material of high thermal conductivity

reduces phase shift per unit length and provides only limited cooling

capability. Forced-air cooling is simple, but provides very limited

cooling and precludes that openings exist for the passage of air.

Analog phase-shifter designs have shown direct liquid cooling to be

far superior to the other techniques. However, the methods used for

Manuscript received March 16, 1970; revised September 7, 1971.
The author was with TRW Corporation, One Space Park, Redondo Beach.

Calif. 9027S. He is now with the Microwave Division, Aeroj et General, Elmonte,
Cslif. 91734.

1Trademark of Minnesota Mining and Manufacturing,
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Fig. L Direct liquid-cooled X-band anslog-latching ferrite phase shifter.

.S- and C-band phase shifters [3] are not applicable at X band. In

an earlier design for an analog ferrite phase shifter, the bar was en-

capsulated in a Tetlon tube and FC-781 was pumped through the

device. At X band and for a digital ferrite phase shifter this technique

is not readily applicable, because of the small size of the ferrite toroid

and the drive wire to be brought out through the Teflon tube.

The technique devised and discussed here is shown in Fig. 1. The

FC-78 liquid is pumped through inlet/outlet ports into and through

the inside of the ferrite toroid. The parts are epoxy bonded to seal the

assembly. The inner slot of the ferrite toroid is filled with a serrated

dielectric slab, which is a compromise design to allow the liquid to

flow through the toroid and to maximize the phase shift. The require-

ment for the direct liquid-cooling design is determined by calculating

the heat load based on the maximum incident RF average power,

the insertion loss of the ferrite materials, and the dimensions of the

ferrite toroid. The flow rate and the pressure are given by:

Q
F.=— = flow rate (gal/rein)

64.6 At

where Q equals the heat load in watts and At the temperature rise in

degrees, and

2.16 X tl)-~LPQ2
P=

d6
= pressure (lbf/in’)

where ~ is the frictional coefficient, p is the density of FC-78, L is the

length of the toroid, and d is the equivalent diameter of the coolant

path through the toroid. The dielectric coolant FC-78 was chosen

because of its good thermal and RF characteristics [3].


