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Attenuation Characteristics of Hollow Conducting
Elliptical Waveguides

JAN G. KRETZSCHMAR

Abstract—The first-order perturbation formula is used to obtain
the attenuation factor of different TE and TM modes in hollow con-
“ducting elliptical waveguides. Normalized attenuation charts give
the attenuation factor for almost each possible combination of cross-
sectional dimensions, nonmagnetic wall material, and frequency
of operation.

INTRODUCTION

HE first results on the attenuation of different
modes in hollow conducting elliptical pipes were
given by Chu [1]. In order to simplify the compu-
tations known asymptotic expansions were used for the
modified Mathieu functions, but this limited the valid-
ity of the results. Using the same approach an exact ex-
pression for the complex propagation factor was ob-
tained by Piefke [2], but once again a simplification was
necessary in order to avoid highly complicated computa-
tions. Therefore, new asymptotic formulas, described in
[4], were developed by Piefke, but the assumptions
made restrict their accuracy in a rather drastic way.
Krank [5] used the first-order perturbation method in
his analysis, but the deadly slow rate of convergence
[8], [13], [14] of the hyperbolic series used to compute
the modified Mathieu functions limits the accuracy of
his data, especially for the higher order modes (although
sufficient accuracy for the dominant mode was ob-
tained).
The purpose of this paper is to present data obtained
by using the perturbation method for the analysis and
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Fig. 1. Hollow conducting waveguide with elliptical cross section.

ATTENUATION OF TE MoDES

A harmonic time variation and propagation in the
axial direction is assumed for the waves propagating in
the hollow conducting elliptical waveguide represented
in Fig. 1. When the conducting boundaries have finite
conductivity ¢, but are still good enough conductors, the
attenuation factor a. due to wall currents can be ob-
tained from the fields in the perfect guide. This proce-
dure is classic and described in most textbooks. The
solution for the HSP elliptical guide is well known [1],
[11], and using this in the above mentioned method
leads to the following normalized expression for the at-
tenuation factor of the even TE., modes [5] in the
guide given in Fig. 1:

Bessel-function product series for the practical compu-
tations of the modified Mathieu functions of the first
kind [8], [13],
formula for the dominant mode, which was proposed by
Kihara [6], |7], [10], is verified, and it is shown that
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the relative error of that formula is smaller than 3 per-
cent over the complete eccentricity and frequency range.
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q nth nonzero parametric root of Ce.n’ (£, q)
=0 (Neumann boundary condition),

cen(n, ¢) even Mathieu function of the first kind and
order m,

Cen(€, ¢) corresponding modified Mathieu function,

fo frequency of the wave (Hz),
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Fig. 2. Normalized attenuation charts for different TE and TM modes in air-filled elliptical waveguides with nonmagnetic
¢ eccentricity of the cross section, a. attenuation in Np/m,

ing symbols and units are used: & semimajor axis in meter,
S/m, and f, frequency in GHz.

fe cutoff frequency of the mnth mode (Hz),

€ eccentricity,

& radial coordinate of the boundary ellipse,

o, attenuation factor in Np/m and 1 Np/m
=8.686 dB/m.

The primes in (1) mean the first derivative with respect
to the argument £ or 7, as the case may be. The double
integral in the denominator of (1) can be reduced to a
single one over £ by applying the properties of the
ordinary Mathieu functions [8, sec. 14-40]. The modi-
fied Mathieu functions are computed by using Bessel-
function product series as described in [8], [13], [14].

With (2) it is obvious that the right-hand side of (1)
is a function of the product af, and the eccentricity e,
and this enables us to construct for each mode a single
attenuation chart which gives the attenuation factor for
almost each possible combination of o, fo, @, and e. The
attenuation characteristics obtained for the dominant
TEq4 mode and the even TE.n mode in an air-filled

walls. The follow-
¢ conductivity in

waveguide with wall conductivity ¢ are given on Fig.
2(a) and (b). For a given eccentricity the attenuation
curves display the same kind of dependence upon the
frequency as for the circular case, but for the same mode
and the same guidewidth 2a the attenuation in the ellip-
tical pipe is always larger than in the circular one, al-
though there is not much difference for small values of
e. At a given frequency the attenuation in a guide with a
given major axis increases with increasing eccentricity
or decreasing minor axis, and this more rapidly as the
eccentricity becomes larger. The difference between our
results and the curves given by Krank [5] for a TEm
and TE,u mode in a copper guide is small and of the
order of the error involved in an interpolation on the
charts. This is not the case for results given in [1] and
[3]. For a copper elliptical waveguide with eccentricity
0.8 and major axis 3.5 cm an attenuation of 8.3 Np/km
at 7 GHz and 6.44 Np/km at 40 GHz is reported in [3]
for the dominant mode. For the same guide we obtain
6.53 Np/km and 6.54 Np/km, respectively. Fig. 2(b)
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Fig. 3. Normalized attenuation curve of the TE.n and TEcn
modes in elliptical guides with different eccentricities.

suggests that the TE,q, modes have the same anomalous
attenuation characteristics as the TEy, modes in circular
waveguides. This is true over a large but limited fre-
quency range determined by the eccentricity value. The
limitation is due to the fact that the second integral in
the numerator of (1) is not zero for TE.q. modes except
when e=0. For each eccentricity value there is a fre-
quency range where the TE; mode has the lowest at-
tenuation. Fig. 3 represents the normalized attenuation
characteristic of the TEg, TEq, and TE;0, TE. modes
with e as parameter over a broad frequency range. The
attenuation of the TE mode given on Fig. 2(c) is im-
portant too, as this mode becomes the first higher order
mode if the eccentricity exceeds about 0.855 [11].

The procedure followed for the odd TE,.. modes is
exactly the same as for the even ones, and the normal-
ized attenuation factor for the hollow conducting guide
is given by (1), except that the even Mathieu and modi-
fied Mathieu functions must be replaced by the odd
ones.

Fig. 2(d) gives the normalized attenuation chart for
the TE; mode. Over a large interval of frequency the
attenuation for a given frequency and major axis in-
creases with eccentricity and does so more rapidly with
increasing eccentricity. For higher and higher values of
afy the attenuation factor tends to an almost eccen-
tricity-independent value, which is approximately equal
to the attenuation factor of the TEy mode in the corre-
sponding circular waveguide. Another interesting fact is
that for frequencies larger than a certain value (which
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Fig. 4. Relative error of Kihara's approximate formula for the
attenuation of the dominant mode in an elliptical waveguide.

of the dominant even mode. This is completely analo-
gous to the phenomenon that the attenuation of the
TE,; mode in a rectangular waveguide becomes smaller
than the attenuation of the dominant TE;, mode in the
same guide for frequencies larger than a certain fixed
value depending upon the ratio b/a with b <a.

As the formulas for the attenuation in an elliptical
waveguide are quite complicated and require not only
the calculation of Mathieu functions, modified Mathieu
functions, and their first derivatives, but also of inte-
grals with combinations of those functions as integrand,
it is clear that an approximate formula with known
accuracy, and not involving those rather uncommon
functions, would be very helpful in practical design,
especially for the fundamental mode. Using a variational
approach, Kihara [6], [10] approximated the electro-
magnetic field distribution and cutoff wavelength of the
dominant mode by algebraic functions. By doing so he
obtained an approximate expression for the attenuation
factor of the TE.; mode. Normalizing this formula in
the same way as was done before gives

ac/a% = 0.725F (afo)!/? 3)

and the normalized attenuation factor is once again a
function of the product (afy) and the eccentricity ¢, as
the factor F only depends upon those quantities as ex-
plained in [6]. The exact attenuation factor is always
smaller than the one given by (3), as the variational ap-
proach gives an upper limit for the attenuation factor.
Fig. 4 gives the relative error ¢, on «, as a function of
(afo) and e. The frequency fo in (3) is in gigahertz.

ATTENUATION OF TM MODES

Using the same approach as for the TE modes one
obtains the following expression for the normalized at-
tenuation factor of the even TM,,, modes [5]

cem(n, q)

2T
CenE00) | S

0 1 — e?cos?y

A/t = [1 - (fc/fo)z:lm

increases with increasing eccentricity) the attenuation
of the odd mode becomes smaller than the attenuation

. pu— .
zf f [Cem,z(fi Q)Cem2("7: g) + Cem2(£, Q)cem,2(77’ Q)] dédy
0 [

4)

The different symbols have the same meaning as before,
except for the parameter ¢. Due to the Dirichlet bound-
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ary condition, ¢ is now the #th nonzero parametric zero
of the modified Mathieu function of the first kind, order
m, and argument &,. Replacing the even Mathieu func-
tion in (4) by odd ones gives the attenuation for the odd
TM,mn modes. Attenuation charts for the TM.o;, TMey,
and TM,; modes are given in Fig. 2(e)~(g). Minimum
attenuation occurs in the circular guide while the at-
tenuation increases with the eccentricity for a fixed
major axis and frequency, and this more rapidly as e
becomes larger. The attenuation of the odd TM;;; mode
is larger than the attenuation of the even TM,; mode,
and they do not behave as the even and odd dominant
TEu modes. Again, quite a difference between these
curves and previously published results [1], [3] is
noticed.

COMPARISON BETWEEN RECTANGULAR, CIRCULAR,
AND ELLIPTICAL WAVEGUIDES WITH THE SAME
CUTOFF FREQUENCY

Although rectangular and some circular guides have
standard dimensions and corresponding fixed frequency
ranges this is not the case for the less common elliptical
guides. This leaves us a wide variety of possibilities for
a comparative study. As an example, we compare the
WR-90 rectangular guide with a circular and elliptical
waveguide with the same cutoff frequency. The rec-
tangular and elliptical guides have the same b/a ratio
while all three guides have aluminum walls. Some of
their respective properties are summarized in the fol-
lowing table. The attenuation in the-elliptical waveguide
is approximately 13 percent less than the attenuation
in the rectangular guide, while the attenuation of the
circular guide is 40 to 50 percent less than the attenua-
tion of the elliptical one. It turns out that in general the
attenuation of the dominant mode in an elliptical wave-
guide is 12 to 15 percent less than the attenuation of the
dominant mode in a rectangular guide with the same
cutoff frequency, wall material, and side ratio. The cir-
cular guide with the same cutoff frequency always has
the lowest attenuation of the three types.

First
Higher
Dimensions Dominant  f, Order I
Type (cm) Mode (GHz) Mode (GHz)
Rectangular 2a=2.286 TE e 6.557 TE,o 13.114
(WR 90) 26=1.016
Elliptical 20=2.7304 TE. 6.557 TEa  12.000
2b=1.2134
Circular 2a=2.679 TEy, 6.557 TM o 8.566
CONCLUSIONS

The well-known first-order perturbation method ap-
plied to elliptical waveguides leads to theoretical formu-
las for the attenuation due to conductor losses.

The practical application of those formulas not only
requires the computation of Mathieu and modified
Mathieu functions and their first derivatives, but also
requires the evaluation of integrals where the former as
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well as the latter are involved. Bessel-function product
series are quite complicated, especially when differentia-
tion and integration are required, but their high rate of
convergence ensures excellent results for the computa-
tion of modified Mathieu functions.

Normalization of the attenuation factor for TE and
TM modes in hollow conducting pipes with elliptical
cross section makes it possible to present for each mode
a single attenuation chart for all possible combinations
of frequency, eccentricity, major axis, and conductivity
of the nonmagnetic metal wall. Applying the same pro-
cedure to hollow conducting pipes with rectangular and
circular cross section enables an easy comparison of the
attenuation characteristics of those three waveguide
types. One of the conclusions of such a comparative
study is that the attenuation in an elliptical guide is 12
to 15 percent less than the attenuation in a rectangular
guide with the same cutoff frequency and axial ratio if
both guides operate in their dominant mode. The dif-
ference in bandwidth is of the same order, and the
rectangular type has the largest bandwidth. This con-
clusion fits into the more general observation that the
elliptical waveguide has some of the advantages as well
as some of the disadvantages of both rectangular and
circular waveguides.

Although exact computations of the attenuation fac-
tor are possible, it is obvious that they are quite cumber-
some for practical design purposes. An approximate
formula for the dominant mode is therefore verified,
and it is shown that its relative error is smaller than 3
percent.

Finally, we can conclude that the results given in this
paper, together with the properties described in previ-
ous publications, form a fairly complete characteriza-
tion of hollow conducting elliptical waveguides.
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Short Papers

A Novel Design of an X-Band High-Power seure
Ferrite Phase Shifter /

KARL H. HERING

Abstract—A nonreciprocal analog-latching phase-shifter design [ j_‘;/:/i o

at X-band is described. The device has been operated up to 250 W
of average power and 50 kW of peak power. Direct liquid cooling is
implemented, pumping FC-78,! a dielectric coolant, through the
center slot of the ferrite toroid.

MAGNETIZING
DRIVER SIGNAL

DIELECTRIC

INTRODUCTION TRANSFCRMER
A novel design of an X-band ferrite phase shifter is presented. L
The device is designed to handle high power levels—up to 250 W el T
average and 50 kW peak. The phase shifter is of the nonreciprocal st DIELECTRIC (FLUID INFUT FORT)

analog latching—a name given to the type of digital phase shifters
that consist of one long toroidal bar. In this type of device the phase
shift is controlled by the driver signal level, as opposed to the con-
ventional digital ferrite phase shifter, which consists of different
lengths of ferrite toroids, each driven into saturation. Internal liquid
cooling is used to achieve stable performance of the device even at
the high average power levels.

The phase shifter required a thermal design of the configuration,
selection of the most applicable ferrite material for high-peak and
average-power handling, and a method of implementing cooling of
the ferrite bar.

Fig. 1. Direct liquid-cooled X-band analog-latching ferrite phase shifter.

S- and C-band phase shifters [3] are not applicable at X band. In
an earlier design for an analog ferrite phase shifter, the bar was en-
capsulated in a Teflon tube and FC-78' was pumped through the
device. At X band and for a digital ferrite phase shifter this technique
is not readily applicable, because of the small size of the ferrite toroid
and the drive wire to be brought out through the Teflon tube.

The technique devised and discussed here is shown in Fig. 1. The

TueERMAL DESIGN ASPECTS FC-78 liquid is pumped through inlet/outlet ports into and through

Applicable methods of cooling the phase-shifter material are: 1)  the inside of the ferrite toroid. The parts are epoxy bonded to seal the
a cold plate [1], 2) forced-air cooling, 3) conduction cooling using assembly. The inner slot of the ferrite toroid is filled with a serrated
boron nitride in contact with the ferrite [2], or 4) direct liquid cool- ~ dielectric slab, which is a compromise design to allow the liquid to
ing, as was chosen for this novel phase-shifter design. Other tech- - flow through the toroid and to maximize the phase shift. The require-
niques are limited in either cooling potential or for mechanical ment for the direct liquid-cooling design is determined by calculating
reasons. Cooling, using a coldplate, has been used successfully in  the heat load based on the maximum incident RF average power,
high-power ferrite phase-shifter designs [1], [2]. In doing so, how- the insertion loss of the ferrite materials, and the dimensions of the
ever, the cross section of the phase shifter becomes large. In many ferrite toroid. The flow rate and the pressure are given by:
phased-array applications very little space is available between the 0
radiating-element/phase-shifter assemblies. Cooling with boron P,
nitride or similar dielectric material of high thermal conductivity
reduces phase shift per unit length and provides only limited cooling
capability. Forced-air cooling is simple, but provides very limited
cooling and precludes that openings exist for the passage of air.
Analog phase-shifter designs have shown direct liquid cooling to be P= 2.16 X 10~ LpQ*
far superior to the other techniques. However, the methods used for ds

=< -4 i
646 AL ow rate (gal/min)

where Q equals the heat load in watts and At the temperature rise in
degrees, and

= pressure {Ibf/in?)

M ot received March 16. 1970 revised S ver 7. 1971 where f is the frictional coefficient, p is the density of FC-78, L is the
anuscript receive arc! 'y {U; revise eptember 7, . . . . . .
The author was with TRW Corporation, One Space Park, Redondo Beach, length of the toroid, and d is the equivalent diameter of the coolant

gaﬁ. 3(1)2722 He is now with the Microwave Division, Aerojet General, Elmonte, path through the toroid. The dielectric coolant FC-78 was chosen
allf, . .
1 Trademark of Minnesota Mining and Manufacturing, because of its good thermal and RF characteristics [3]



